Postulates for a Poisson Process

1. Events in non-overlapping time intervals are
independent.
2. For “small” A,:
a) Pr[1 arrival in A, ] = AA,
b) Pr [more than 1 arrival n A, ] =0
¢) Pr[no arrivals in A, | = 1-AA,

0 tt+ A,
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Poisson Process

Arrivals:

Let N(t,,t,) be the number of arrivals in the interval [t;, t,)

Let N(t) be the number of arrivals in the interval [0, t), 1.e., N(t) =N(0,t)

’
Pr[N(t):k}:(it!) e ™ k=0,1,2,---

* Homogeneous in time: N(t) = N(0, t) = N(t,, t,), where t =t, — t,

+ N(b)

o

t, ot 4t '
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Poisson Process (cont’d.) . g

 If[t,, t,] and [t;, t,] are non-overlapping, N(t,, t,) and N(t;, t,) are
independent.

« Fort,>t,, N(t,, t,) = N(0, t,) — N(0, t,)

« Mean, autocovariance, and autocorrelation functions follow (see text)

m, (t)=E[N(t)]=at
 (t,t)=E (N (t)=my (t))(N(t,)=my (t,)) | = Amin(t,.t, )
(t,.t,) =Cy (1.t )+my (t)my (t,) = Amin(t,t, )+ A°tt,
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8-4

Random Telegraph Signal

time

N(t) changes sign with each arrival of the Poisson process of rate A

Pr{N(0)=1]=p, Pr|N(0)=-1|=1-p
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PMF of N(t)




PMF of N(t) (continued)

We then have
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Mean, autocorrelation, and autocovariance functions

my ()= E[N ()] =(-1)Pe[N (1) = 1]+ (1)Pe[ N (1) =1]
oo

Ru () = E[ N (t)N(t,)]

=(+1 Pr[Nt):N( ) |+(=1)Pr| N(t,)=N(t,)]

|:1_|_e 24t tl\]_%[ 2/1\t2 tl\:| 2A\t2—tl\

Cy (t,1,) =Ry (t,1,) =my (8 )my (t,) = = (2p-1) e 400
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Markov Processes: Discrete-Time Markov Chain

Process in state 3

4 |
® \ Process in state 2

31 @) /

ol LT

\

Process in state O

8-8 © M. Tummala & C. W. Th

errien 2004



Discrete-Time Markov Chain

Let X[n] be a discrete-time discrete-magnitude random signal. If it satisfies

Pr| X[n]= j|X[n=1]=i, X[n=2]=i,,---, X[1] =i, X[0] =i, |
=Pr| X[n]= j|X[n-1]=i, | for all n, j,i,,i,, -,

n

then X[n] 1s called a discrete-time Markov chain.

State transition probabilities: State transition matrix:

pij:Pr[X[n]:j‘x[n_l]:i]a Poo P Pz =+ Poma
0<1,]<m-1 Po  Pu P - Pina

p—
m-1
0< B <I; Zpij =1,
i=0

_pm—l,O pm—l,l pm—1,2 pm—l,m—l_

for IZO:L"'am_l Rows sum to 1
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Example: Consider a 3-state Markov chain

{;%P”ﬂ}

state 0 (ot 1 state
State transition probabilities: State transition matrix:
Py =0-3 Py, =04 (0.3 04 03
P =02 p,; =05 P={02 05 03
Py =04 p,, =04 104 04 0.2

State transition diagram:
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State Probabilities (not transition probabilities)

The state probability vector at any discrete time ‘K’ is given by

PolN]

p[n]= plz[n] g p[n]=1  foralln

3

I
e

PNl

Then the state vector at time ‘K’ is given by

pin]=P'pn-11=(P")'p[0], n=1,2,3,--
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Limiting-State Probabilities

The limiting-state probability vector

p=limp[n]=lim(P")'p[0] < 3 P, =1

N—o0 N—oo

Assuming that the limiting-state probabilities exist, we have

T_ N
" PP \
eigenequation

 eigenvalue = 1

(PT —1| )ﬁ =0  eigenvector = P

Solve for P (P is known).
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Example:

0.6 04 L
P = R D. :1
{0.1 0.9} ZO: P
(2) Find P .
-04 0.1 || p
04 0.1

47, = El} p,=0.2
o = _
po+p1:1 p1:0,8

(b) Find the probability of a run of ten values of state 0

(0.2)(0.6) =0.002

|

0
0

|
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Continuous-Time Markov Chain

Simple server system

\ 4
Y

server [— Departure

Arrival
Poisson (L) queue Service
Time
exponential (u)

The queue can be described by a continuous-time Markov chain with
a possibly infinite number of states.

LAt AAL AL LAt
reOMmOEROx:
At ' LAt At pAt

1—(+p)At 1—(A+L)At

The Markov random process looks like:

mt—'J'-'_Lt

No(t)
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Continuous-Time Markov Chain (cont’d.)

The server can be described by a continuous-time Markov chain with
just two states.

AAL

(D

pHAL

The Markov random process looks like:

Ns(t) \_ﬂ
t

© M. Tummala & C. W. Therrien 2004



Transition Rate Diagram
Let N(t) be a continuous-time Markov chain.

Transition Rates

r;; are rates of the Poisson process defining transitions from state I to
state |.

A transition rate diagram is a state diagram with the rates indicated.
Note that the rates do not represent probabilities directly and there are
no self-loops.

Example for the service process:
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Time-Dependent State Probabilities

Now consider a more general Markov chain. A typical state has
multiple transitions to and from other states:

Define p; (t) = Pr [N(t) =J]. Then,

((t+At) Z ry At-p, (t)+[ 1= r, At |p,(t)

/=0
K;tj K (# ] )
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Time-Dependent State Probabilities (cont’d.)

( h
((t+At) Z ry At-p, (t)+] 1- erm p; (t)
Rearranging: H J K Ei J /
( )
p; (t+At)-p m-l
AL Z e 1Py ()
=0
f;tj \ {#] )
In the limit:
dp.(t) ot Us
cjlt( ): r D, (t) where T, ——Z r,
iz‘}

(Chapman-Kolmogorov equation for
continuous-time Markov chains)
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Global Balance Equations

Beginning with the Chapman-Kolmogorov equation:

dp, (t)
pj( ):erj pg(t) jZO,l,-..,m—l
dt (=0

For steady-state probability flow-rate balance, let:

dp; (t)

dt

— 0

t>o = p(t)>p, =

r, p,=0 ]=0,1,---,m—1
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Global Balance Equations (cont’d.)

m—1
drip, =0 j=0,1,---,m-1
/=0

Now recall that, I = —Z i, Thus Z Vi P, — Dy Z ri, = 0
=0 =0 (=0
(%] l#] (%]
m—1 m-1
Probability flow-rate balance equation: Jﬁ - jt s i M
(%] (%]
I‘jl rjf
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Example:

For State O:

For State 1:

Also use:

to find:

Fo1 =2

APo= P,
1P, =Ap,

Pot P =1

Py =

Fio=H

(Global balance equations)

M
A+u

_/1+,u
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Numerical Example:

A=10 pps
n=12 pps
A 5
APy =up, = P=—P,=—h,
Y7 6
5
Ppptp =1l = po+gpo=1
p —E p —i
1 Tt 11
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Queuing System: M/M/Kt

«— NUO)=A®)-Dt) —>

Queuing System N,(t)
A(t) D(1)
N, ()
i packet arrives @ | it packet departs
attimeS,— | (. > at time D,
w
Queue ,(:)_>
S
Server(s)

«—T,=D-§ ——
N(t): Number of packets in system T: Time spent in system
Ny (): Number of packets in queue ~ W: Waiting time in queue
N, (t): Number of packets in service S: Service time

1 Shorthand notation: a/b/c/d

Arrival process/Service time distribution/Number of servers/Buffer size
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Single Server Queuing System: M/M/1 System

 Job arrival 1s a Poisson process and the interarrival time 7 is
exponentially distributed with A as the parameter

Pr[A(t):n]:(ﬁt') e_/u, n2091929°"

 Job service time S is exponentially distributed with u as the parameter

fo(s)=we™, s20
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M/M/1 System (cont’d.)

Assume an infinitely long queue (birth-death queue)

with state transition rates: I’j’ i =

A,

(=4 j=0,1,2,-

Global Balance Equations (by observation)

State 0: AP, = 1P,
State 1: (/1+,u) P, =Ap,+up,

State n: (ﬂ,-i-,ll) P, = an_l T HP,

APy =P, =0
AP —uP, =Ap,—up, =0

ﬂpn_lupnﬂ :ﬂ’pn—l_lupn =0

© M. Tummala & C. W. Therrien 2004



M/M/1 System (cont’d.)

Global balance equations

APy~ P =0
AP —up, =0
ﬂ'pn_zupnﬂ =0

Ot pJ:%pjl j:192939"',n,n+1,"'

By induction, the state probabilities:

]

A

7

n
j Pos n=0,1,2,3, ---
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M/M/1 System (cont’d.)

A
Rewrite: pn = pn po; n= (), 1,2,3, ... where p=—
Y7
This defines a PMF for the state of the queue
ho P
= =nl= p
fy[n]=Pr[N =n]=p, .
‘ p4 pj
‘ | e o o | e o o n
0 1 2 3 4 j
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M/M/1 System (cont’d.)

fy[n]=Pr[N =n]=p,

To determine the unknown p, use:

o0

ijzzpjpo pOZ,OjZDO
i~ i

j=0

for p<l1,1e., A<y, thus p,=1-p and

fu[n]=p,=(1-p)p", n=0,2,

Thus N, which represents the number of jobs in the system, is a type 0

geometric random variable. pis called the utilization factor (0 <p<1).
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Some Important Formulas

1. Probability of long queues:

ny—1 | -1
Pr[N<n]=> (1-p)p' =(1-p)D>_p’
j=0 j=0
l_pno n
= l—p . :l_po
(1=r,)7;
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Important Formulas (cont’d.)

2. Average number of jobs in the system:

E [ N (t)] = ﬁ (mean of the geometric PMF)

© M. Tummala & C. W. Therrien 2004



Little’s Formula

A N(t) = A(t) -D(1) D(1)
-th . - h .
| _]'Ob Queuing I job
arrives at ———— ¢ —> departs at
. ystem ]
time S, time D,
Ti = Di _Si

jobs N 1n a system i1s

For systems that reach equilibrium, the average number of

E[N(t)] = A E[T]

where E[T] is the average time spent in the system by a job.
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Comments on Little’s Formula

Little’s formula can be extended to other quantities. Let T =W + S

where W 1s the waiting time in the queue and S is the service time
(note that E[S] = 1/p).

« The average number of jobs in the queue is given by
E[ N, (t)|=AE[W] (1)

» The average number of jobs in service or utilization of a single
server system 1s

E[Ng(t)|=2E[S]=4/u=p 2)
where E[S] 1s the average service time.
» The utilization of a K-server system is then given by
_AE[S]_ 4
K Ku

Pk
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Comments (cont’d.)

« The average total delay experienced by a job in a single server
system
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Comments (cont’d.)

» The average waiting time in the queue

EW]=E[T]-E[s]= £ 2=~ @

» The average number of jobs in the queue

E [ N, ] =AE[W]  « Little's formula restated

= )
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Example:

Consider an M/M/1 system
(a) Find Pr [N(t) > 10]

PrN(t)>10|=Pr[ N(t)>11]=p"

(b) Find the maximum allowable arrival rate, A, if we require
Pr| N(t)=10|=10". Let x=4 per second

PrN(t)=10|=p" =10~
p=£=10_0'3
U

A=pul0 =2
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Example (cont’d.):

(¢) Find the minimum allowable service rate, y, if we require
Pr[N (t)> 10] —10~°. Let A =4 per second

PrN(t)=10]|=p" =107
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Example: M/M/1 system

Packets arrive at a network router at a rate 4 =2x10° per sec.

The service is performed by the router at a rate 1= 2.5 x10° per sec.

A 2 4

The utilization factor, p =—
e utilization tactor, O 1 25 s
PMF, f[n]=(1-p)p", n>0.

(a) Find the mean number of jobs in the system, E[N(t)].

0.8
E[N(t)]zlf)p 108
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Example (cont’d.):

(b) Average total delay in the system. From Little’s formula

E[N 4
Elr)- [ﬂb(t)]zleo5

=20 us

(c) What value of A would double E[T] in (b)?

1 10° :
E[T]=——=40us or pu=A =" =025x10

u—A
A=pu—-025x10>=2.5x10>-0.25x10> =2.25x10° per sec

(d) What is the utilization? (0.9)
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M/M/K System

The state transition diagram for an M/M/k system

A A A A
oSoBot>Soc
u 2u Kyt ki

The state probabilities of this queue can be written as

A 1 (A

pn:_pnlz_(_j pO, n:1,2,...,k
nu NI\ u

A

n—k
pn:—p :(—j pn:pn_kpkp n:k+1’k+2’...
H Ku

where p is defined as p = A/Ky.

© M. Tummala & C. W. Th

errien 2004



M/M/Kk System (cont’d.)

By substituting for p,, we have

1

P =1

K
(Zj o po, n=k+1, k+2, kK+3,---
The probability of the 0™ state is obtained as follows:

u SO

n=0 n=1 k
SHEOAY 1
& _LZ;‘”_!(;] u p}
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M/M/Kk System (cont’d.)

The probability that an arriving job is forced to wait because all k-servers
are busy 1s known as the Erlang C formula:

c(k,ij:pr[w L 0]=Pr[N >k]=3p,

M n=k
Y

n=k k:1_p

The average number of customers in the queue 1s given by

E[N, |= S (n—k) p"*p, = kaIp—

n=k — ,0)2

Py

© M. Tummala & C. W. Therrien
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M/M/Kk System (cont’d.)

From Little’s formula: E [W] = = 5 Py

A(1-p)
k
_L»p (ij o+ L
KIA(1-p) \u M

By using Little’s formula, the total jobs in the system can then be

obtained as
E[N] =AE [T]
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Continuous-time Markov chain
— M/M/1 queue

E[N(t)]:ﬁ E[N(t)]=AE[T]

— M/M/k queue

k
1 Jo, A 1
EIT = —

[ ] k!ﬁ,(l—p)z(,uj p0+,u
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Example:

Compare queuing systems:

A. M/M/1 system with one 100 GIPS server
A =5000 per sec, u= 6000 per sec

1 1

E[T]= = =1ms
-2 60005000

B. Ten M/M/1 systems each with a 10 GIPS server

with A =500 per sec, 1= 600 per sec

1 1

-4 600-500

E[T]

The mean delay in the 100 GIPS system is 1/10% that of the
system with ten 10 GIPS servers.
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Example (cont’d.):

C. An M/M/10 system with a 10 GIPS server:

s (i)
= z(l—pfm a

=8.8278x107"% p, LR

1
7
1
)7

1

=——=1.6667 ms
600
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